Nuclear-Powered Cruise Missiles Are a Terrible Idea. Russia’s Test Explosion Shows Why
When President Donald Trump heard that Russia’s experimental nuclear-powered cruise missile had exploded, killing seven scientists and causing a major radiological incident less than 300 miles from the Finnish border, he fired off a boastful tweet. “We have similar, though more advanced, technology,” he said.
This is…not accurate. In the late 1950s and early 1960s, the United States pursued a less advanced version of a similar technology but abandoned the effort before ever launching an actual test vehicle. Nuclear-powered cruise missiles, the Pentagon concluded, are a bad idea.
But the concept still appeals to Vladimir Putin, who last year revealed his pursuit of an “unlimited-range” missile that Russia calls the 9M730 Burevestnik (Storm Petrel) and which NATO has dubbed the SSC-X-9 Skyfall. A missile powered by a small nuclear reactor could cruise about its target for days, giving it a wide range of potential targets it could strike upon command.
...The biggest challenge: nuclear reactors are fragile things. Putting one in a cruise missile would require a design that could withstand three types of stress that no previous reactor had needed to endure.
“There are the stresses associated with the pressure drop through the ‘reactor’ and, as indicated earlier, this stress is of the order of hundreds of psi [pounds per square inch] when spread over the entire reactor,” Merkle wrote. “When concentrated at various support points, it contributes loads like thousands of psi. Next in order: to transfer heat from the fuel to the air stream, there must be a temperature drop in the fuel-bearing materials and, for typical ceramics and power densities that would be of interest for possible missile applications, stresses of many thousand psi result as a consequence of these temperature differences.”
“There are the stresses associated with the pressure drop through the ‘reactor’ and, as indicated earlier, this stress is of the order of hundreds of psi [pounds per square inch] when spread over the entire reactor,” Merkle wrote. “When concentrated at various support points, it contributes loads like thousands of psi. Next in order: to transfer heat from the fuel to the air stream, there must be a temperature drop in the fuel-bearing materials and, for typical ceramics and power densities that would be of interest for possible missile applications, stresses of many thousand psi result as a consequence of these temperature differences.”
No comments:
Post a Comment